NTP15N40, NTB15N40

Preferred Device

Advance Information

Power MOSFET 15 Amps, 400 Volts N-Channel TO-220 and D²PAK

Designed for high voltage, high speed switching applications in power supplies, converters, power motor controls and bridge circuits.

Features

- Higher Current Rating
- Lower R_{DS(on)}
- Lower Capacitances
- Lower Total Gate Charge
- Tighter V_{SD} Specifications
- Avalanche Energy Specified

Typical Applications

- Switch Mode Power Supplies
- PWM Motor Controls
- Converters
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	400	Vdc
Drain–Gate Voltage ($R_{GS} = 1.0 M\Omega$)	V _{DGR}	400	Vdc
Gate–Source Voltage – Continuous – Non–Repetitive (t _p ≤10 ms)	V _{GS} V _{GSM}	±20 ±40	Vdc
Drain – Continuous – Continuous @ 100°C – Single Pulse (t _p ≤10 μs)	ID ID I _{DM}	15 12 53	Adc
Total Power Dissipation Derate above 25°C	PD	202 1.61	Watts W/°C
Operating and Storage Temperature C Range	T _J , T _{stg}	–55 to 150	°C
Single Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V _{DD} = 100 V, V _{GS} = 10 Vdc, I_L = 15 A, L = 6 mH, R _G = 25 Ω)	E _{AS}	675	mJ
Thermal Resistance – Junction-to-Case – Junction-to-Ambient – Junction-to-Ambient (Note 1.)	R _{θJC} R _{θJA} R _{θJA}	0.62 62.5 50	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

1. When surface mounted to an FR4 board using the minimum recommended pad size.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

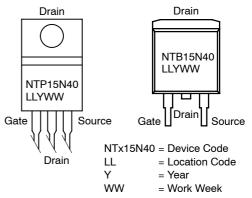
ON Semiconductor™

http://onsemi.com

15 AMPERES

400 VOLTS

 $R_{DS(on)} = 260 \text{ m}\Omega$


N-Channel

TO-220AB CASE 221A

D²PAK CASE 418B STYLE 2

MARKING DIAGRAMS AND PIN ASSIGNMENTS

STYLE 5

ORDERING INFORMATION

Device	Package	Shipping
NTP15N40	TO-220AB	50 Units/Rail
NTB15N40	D ² PAK	50 Units/Rail
NTB15N40T4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

NTP15N40, NTB15N40

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	ŀ				
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 0.25 mAdc) Temperature Coefficient (Positive)	V _{(BR)DSS}	400 -	_ 510		Vdc mV/°C
Zero Gate Voltage Collector Current (V_{DS} = 400 Vdc, V_{GS} = 0 Vdc) (V_{DS} = 400 Vdc, V_{GS} = 0 Vdc, T_J =125°C)	I _{DSS}			10 100	μAdc
Gate-Body Leakage Current (V _{GS} = \pm 20 Vdc, V _{DS} = 0)	I _{GSS(f)} I _{GSS(r)}	-		100 100	nAdc
ON CHARACTERISTICS (Note 1)		•			
Gate Threshold Voltage $I_D = 0.25 \text{ mA}, V_{DS} = V_{GS}$	V _{GS(th)}	2.0	2.5	4.0	Vdc

$T_D = 0.25$ mA, $V_{DS} = V_{GS}$ Temperature Coefficient (Negative)		-	6.8	4.0	mV/°C	
Static Drain-to-Source On-Resistance (V_{GS} = 10 Vdc, I_D = 7.5 Adc)	R _{DS(on)}	-	230	260	mOhm	
$\label{eq:constraint} \begin{array}{l} \mbox{Drain-to-Source On-Voltage} \\ (V_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 15 \mbox{ Adc}) \\ (V_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 7.5 \mbox{ Adc}, \mbox{ T}_{J} = 125^{\circ}\mbox{C}) \end{array}$	V _{DS(on)}	-		4.7 4.1	Vdc	
Forward Transconductance (V_{DS} = 15 Vdc, I_D = 7.5 Adc)	9FS	10	13	-	mhos	
DYNAMIC CHARACTERISTICS						

DYNAMIC CHARACTERISTICS

Input Capacitance		C _{iss}	-0	1800	2520	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}		630	880	
Transfer Capacitance		C _{rss}	-0	40	80	
SWITCHING CHARACTERISTIC	S (Note 2)	5.5	<u> </u>			

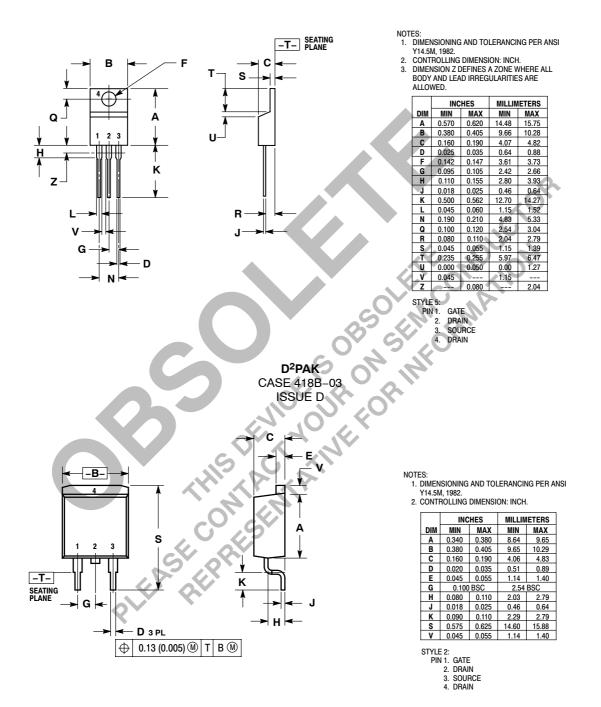
SWITCHING CHARACTERISTICS (Note 2)

Turn-On Delay Time	5	t _{d(on)}	- 1	13	30	ns
Rise Time		tr	-	40	80	
Turn-Off Delay Time	$R_{\rm G} = 9.1 \ \Omega$	t _{d(off)}	-	49	100	
Fall Time		t _f	-	46	90	
Gate Charge		QT	-	37	50	nC
	$(V_{DS} = 320 \text{ Vdc}, \text{ I}_{D} = 15 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc})$	Q ₁	_	8.0	1	
	V _{GS} = 10 Vdc)	Q ₂	_	12	_	
		Q ₃	-	20	-	

SOURCE-DRAIN DIODE CHARACTERISTICS

Forward On-Voltage (Note 1)		V _{SD}				Vdc
	(I _S = 15 Adc, V _{GS} = 0 Vdc) (I _S = 15 Adc, V _{GS} = 0 Vdc, T _J = 125°C)		-	0.90	1.0	
	$(I_S = 15 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		-	0.80	-	
Reverse Recovery Time		t _{rr}	-	290	-	ns
Q	(I _S = 15 Adc, V _{GS} = 0 Vdc,	t _a	-	170	-	
	di _S /dt = 100 A/µs)	t _b	-	120	-	
Reverse Recovery Stored Charge		Q _{RR}	_	3.5	-	μC

INTERNAL PACKAGE INDUCTANCE


Internal Drain Inductance (Measured from contact screw on tab to center of die) (Measured from the drain lead 0.25" from package to center of die)	L _D	-	3.5 4.5	-	nH
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)	L _S	-	7.5	-	

Pulse Test: Pulse Width ≤[300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperature.

NTP15N40, NTB15N40

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB CASE 221A-09 ISSUE AA

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative